Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256100

RESUMO

In this study, a novel film of poly(vinyl alcohol) (PVA)/pullulan (PULL) with improved surface characteristics was prepared from poly(vinyl acetate) (PVAc)/PULL blend films with various mass ratios after the saponification treatment in a heterogeneous medium. According to proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared, and X-ray diffraction results, it was established that the successful fabrication of saponified PVA/PULL (100/0, 90/10, and 80/20) films could be obtained from PVAc/PULL (100/0, 90/10, and 80/20) films, respectively, after 72 h saponification at 50 °C. The degree of saponification calculated from 1H-NMR analysis results showed that fully saponified PVA was obtained from all studied films. Improved hydrophilic characteristics of the saponified films were revealed by a water contact angle test. Moreover, the saponified films showed improved mechanical behavior, and the micrographs of saponified films showed higher surface roughness than the unsaponified films. This kind of saponified film can be widely used for biomedical applications. Moreover, the reported saponified film dressing extended the lifespan of dressing as determined by its self-healing capacity and considerably advanced in vivo wound-healing development, which was attributed to its multifunctional characteristics, meaning that saponified film dressings are promising candidates for full-thickness skin wound healing.


Assuntos
Etanol , Álcool de Polivinil , Glucanos , Bandagens , Poli A , Cloreto de Polivinila
2.
Polymers (Basel) ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896426

RESUMO

When manufacturing fiber-reinforced composites, it is possible to improve the quality of fiber steel fire and reduce the number of cracks in the finished product if it is possible to quickly identify the defects of the fiber tow. Therefore, in this study, we developed a method to identify the condition of carbon fiber tow using eddy current test (ECT), which is used to improve the quality of composite materials. Using the eddy current detection sensor, we checked the impedance results according to the condition of the CF tow. We found that the materials of the workbench used in the experiment greatly affected the ECT results, so it is necessary to use a material with a non-conductive and smooth surface. We evaluated the impedance results of the carbon fiber at 2 mm intervals using the ECT sensor and summarized the impedance results according to the fiber width direction, presenting the condition of the section as a constant of variation (CV). If the condition of the carbon fiber tow was unstable, the deviation of the CV per section was large. In particular, the deviation of the CV per section was more than 0.15 when the arrangement of the fibers was changed, foreign substances were formed on the surface of the fibers, and damage occurred in the direction of the fiber width of more than 4 mm, so it was easy to evaluate the quality on CF tow.

3.
Materials (Basel) ; 16(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37297182

RESUMO

Typically, archers prepare two sets of bows for competitions in case of bow breakage, but if the limbs of the bow break during a match, archers can become psychologically disadvantaged, leading to potentially fatal consequences. Archers are very sensitive to the durability and vibration of their bows. While the vibration-damping properties of Bakelite® stabilizer are excellent, its low density and somewhat lower strength and durability are disadvantages. As a solution, we used carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) for the archery limb with stabilizer, commonly used for the limbs of the bow, to manufacture the limb. The stabilizer was reverse-engineered from the Bakelite® product and manufactured using glass fiber-reinforced plastic in the same shape as the existing product. Analyzing the vibration-damping effect and researching ways to reduce the vibration that occurs during shooting through 3D modeling and simulation, it was possible to evaluate the characteristics and the effect of reducing the limb's vibration by manufacturing archery bows and limbs using carbon fiber- and glass fiber-reinforced composites. The objective of this study was to manufacture archery bows using CFRP and GFRP, and to assess their characteristics as well as their effectiveness at reducing limb vibration. Through testing, the limb and stabilizer that were produced were determined to not fall behind the abilities of the bows currently used by athletes, and they also exhibited a noticeable reduction in vibrations.

4.
Membranes (Basel) ; 13(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36676861

RESUMO

The problem of industrial wastewater containing heavy metals is always a big concern, especially Cu2+, which interprets the soil activity in farmland and leaves a negative impact on the environment by damaging the health of animals. Various methods have been proposed as countermeasures against heavy-metal contaminations, and, as a part of this, an electrospun nanofibrous adsorption method for wastewater treatment is presented as an alternative. Poly(lactic acid) (PLA) is a biopolymer with an intrinsic hydrophobic property that has been considered one of the sustainable nanofibrous adsorbents for carrying adsorbate. Due to the hydrophobic nature of PLA, it is difficult to adsorb Cu2+ contained in wastewater. In this study, the hydrophilic PLA/poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) nanofibrous adsorbents with different silicon dioxide (SiO2) concentrations were successfully prepared by electrospinning. A hydrophilic group of PEG-PPG-PEG was imparted in PLA by the blending method. The prepared PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents were analyzed with their morphological, contact angle analysis, and chemical structure. The Cu2+ adsorption capacities of the different PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents were also investigated. The adsorption results indicated that the Cu2+ removal capacity of PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents was higher than that of pure ones. Additionally, as an affinity nanofibrous adsorbent, its adsorption capacity was maintained after multiple recycling processes (desorption and re-adsorption). It is expected to be a promising nanofibrous adsorbents that will adsorb Cu2+ for wastewater treatment.

5.
Polymers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146059

RESUMO

Novel poly(vinyl alcohol) (PVA)/poly(vinyl butyral-vinyl alcohol) (P(VB-VA)) films with improved hydrophobicity were prepared from poly(vinyl acetate) (PVAc)/poly(vinyl butyral) (PVB) blend films with various mass ratios by saponification in a heterogeneous medium. The successful conversion of PVAc to PVA and PVAc/PVB to PVA/P(VB-VA) films was confirmed by Fourier transform infrared spectrometry, X-ray diffraction, and proton nuclear magnetic resonance analysis. This study also shows that the degree of saponification (DS) depends on the saponification time. The maximum DS of 99.99% was obtained at 96 h of saponification for all films, and the presence of PVB did not affect the DS at saponification times of 48-96 h. The effects of the PVAc/PVB blend ratio before and after saponification were determined by contact angle measurement, and the hydrophobicity was found to increase in both cases with increasing PVB content. Additionally, all the films exhibited improved mechanical properties after saponification, and the treated films possessed an unusual porous and uneven surface, in contrast with the untreated films. The prepared films with improved hydrophobicity can be used for various applications, such as biomaterials, filters, and medical devices.

6.
Materials (Basel) ; 15(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955248

RESUMO

Blown films based on low-density polyethylene (LDPE)/linear low-density polyethylene (LLDPE) and silica aerogel (SA; 0, 0.5, 1, and 1.5 wt.%) were obtained at the pilot scale. Good particle dispersion and distribution were achieved without thermo oxidative degradation. The effects of different SA contents (0.5-1.5 wt.%) were studied to prepare transparent-heat-retention LDPE/LLDPE films with improved material properties, while maintaining the optical performance. The optical characteristics of the composite films were analyzed using methods such as ultraviolet-visible spectroscopy and electron microscopy. Their mechanical characteristics were examined along the machine and transverse directions (MD and TD, respectively). The MD film performance was better, and the 0.5% composition exhibited the highest stress at break. The crystallization kinetics of the LDPE/LLDPE blends and their composites containing different SA loadings were investigated using differential scanning calorimetry, which revealed that the crystallinity of LDPE/LLDPE was increased by 0.5 wt.% of well-dispersed SA acting as a nucleating agent and decreased by agglomerated SA (1-1.5 wt.%). The LDPE/LLDPE/SA (0.5-1.5 wt.%) films exhibited improved infrared retention without compromising the visible light transmission, proving the potential of this method for producing next-generation heat retention films. Moreover, these films were biaxially drawn at 13.72 MPa, and the introduction of SA resulted in lower draw ratios in both the MD and TD. Most of the results were explained in terms of changes in the biaxial crystallization caused by the process or the influence of particles on the process after a systematic experimental investigation. The issues were strongly related to the development of blown nanocomposites films as materials for the packaging industry.

7.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407770

RESUMO

For the first time, poly(vinyl alcohol) (PVA)/poly(methyl methacrylate-methallyl alcohol) (P(MMA-MAA)) (9:1, 7:3, 5:5) blend films were made simultaneously using the saponification method in a heterogeneous medium from poly(vinyl acetate) (PVAc)/poly(methyl methacrylate) (PMMA) (9:1, 7:3, 5:5) blend films, respectively. The surface morphology and characteristics of the films were investigated using optical microscopy (OM), atomic force microscopy (AFM), X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Moreover, the effect of the PVAc content on the degree of saponification (DS) of the PVAc/PMMA films were evaluated and revealed that the obtained DS value increased with the increase in PVAc content in the PVAc/PMMA blend films. According to the OM results, the saponified films demonstrated increased surface roughness compared with the unsaponified films. The AFM images revealed morphological variation among the saponified PVAc/PMMA blend films with different mass ratios of 9:1, 7:3, and 5:5. According to the DSC and TGA results, all blend film types exhibited higher thermal property after the saponification treatment. The XRD and FTIR results confirmed the conversion of the PVAc/PMMA into PVA/P(MMA-MAA) films. Thus, our present work may give a new idea for making blend film as promising medical material with significant surface properties based on hydrophilic/hydrophobic strategy.

8.
Membranes (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36676839

RESUMO

Fog is a resource with great potential to capture fresh water from the atmosphere, regardless of the geographical and hydrological conditions. Micro-sized fog collection requires materials with hydrophilic/phobic patterns. In this study, we prepared hydrophilic poly(lactic acid) (PLA)/poly(ethylene glycol)-poly(propyl glycol)-poly(ethylene glycol) (PEG-PPG-PEG) blended nanofiber membranes with various PEG-PPG-PEG concentrations by electrospinning. Changes in the morphological and chemical properties, surface wettability, and thermal stability of the PLA/PEG-PPG-PEG composite nanofiber membranes were confirmed using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, contact angle testing, and thermogravimetric analysis. As the PEG-PPG-PEG content of the nanofiber membranes increased, their hydrophilicity increased. Water stability, membrane porosity, and water transport rate tests were also conducted to observe the behavior of the hydrophilic PLA nanocomposite membranes in aqueous media. Finally, we applied the PLA-based membranes as fog collectors. As the PEG-PPG-PEG content of the nanofiber membranes increased, their ability to collect fog increased by over 40% compared with that collected by a pure PLA membrane. The prepared membranes not only improve the ability of fog collectors to harvest water but also broaden the use of PLA-based membranes in multiple applications, including tissue engineering, drug delivery, scaffolds, and pharmaceuticals.

9.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670897

RESUMO

Hybrid nanobiocomposite films are prepared using a solution casting by incorporating TEMPO cellulose nanofibrils (TOCNs) and carbon nanotubes (CNTs) into an aqueous solution of pullulan (PULL). The presence of CNT is confirmed by XRD characterization, and the prepared film shows an increased degree of crystallinity after the addition of TOCNs and CNT. The maximum degree of crystallinity value is obtained for CNT 0.5 % (59.64%). According to the Fourier-transform infrared spectroscopy, the shifts of the characteristic -OH peak of PULL occurred after the addition of TOCNs and aqueous CNT (3306.39 to 3246.90 cm-1), confirming interaction between the TOCNs, CNTs, and PULL matrix. The prepared films show enhanced material properties including higher tensile strength (65.41 MPa at low CNT content (0.5%)), water barrier properties, and reduced moisture susceptibility (5 wt.% CNT shows the lowest value (11.28%)) compared with the neat PULL film. Additionally, the prepared films are almost biodegradable within 64 days and show excellent electrical conductivity (0.001 to 0.015 S/mm for 0.5-5% CNT), which suggests a new approach to transform natural polymers into novel advanced materials for use in the fields of biosensing and electronics.

10.
Carbohydr Polym ; 240: 116307, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32475577

RESUMO

Nanocomposite film of pullulan (PULL), tempo cellulose nanofibrils (TOCNs) and, montmorillonite clay (MMT) were prepared using a solution casting method with aqueous solutions. X-ray diffraction data revealed that exfoliated MMT nanoplatelets are distributed within the PULL/TOCNs/MMT film structure. Fourier-transform infrared results revealed that there might be interactions among the TOCNs, MMT and PULL matrix led to improved tensile strength, thermal stability, water barrier properties, and decrease moisture susceptibility while maintained reasonable transparency and biodegradability of the ternary PULL nanocomposites. These excellent properties of the nanocomposites clearly indicate towards a new strategy for developing high-performance PULL-based nanocomposites by using two different types of fillers with various geometric shapes and aspect ratio. This kind of ternary nanocomposite film can be broadly used in food packaging and protection as a green and biodegradable film.


Assuntos
Bentonita/química , Celulose/química , Óxidos N-Cíclicos/química , Glucanos/química , Nanocompostos/química , Nanofibras/química , Bentonita/metabolismo , Biodegradação Ambiental , Celulose/metabolismo , Óxidos N-Cíclicos/metabolismo , Embalagem de Alimentos , Glucanos/metabolismo , Microbiologia do Solo , Resistência à Tração , Água/química
11.
Nanomaterials (Basel) ; 8(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227671

RESUMO

Coptis chinensis (CC) is used in conventional Chinese medicine. The main active components of CC are isoquinoline alkaloids, including berberine, coptisine, palmatine, and magnoflorine; all these are known to have several pharmacological properties. Poly(vinyl alcohol) (PVA) is a well-known synthetic biocompatible polymer suitable for a range of pharmaceutical uses; it can be used as a matrix for the incorporation of functional materials and has a wide range of applications in the cosmetics, food, pharmaceutical, and packaging industries. In this study, PVA-based electrospun nanofibers containing CC extract were successfully fabricated. Furthermore, the effects of different CC extract contents on the morphologies, and antimicrobial and antifungal properties of PVA/CC extract nanofibers were investigated. Morphological changes were observed using different molecular weights of PVA. For characterization, field-emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared analysis were performed. The effectiveness of these nanofibers has been demonstrated by evaluating the thermal stability against Staphylococcus aureus, antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis, and the antifungal activity against the fungi Aureobasidium pullulans and Penicillium pinophilum. The PVA/CC extract nanofibers were found to have excellent antibacterial and antifungal activity and thermal stability; hence, their use in medicinal sectors is highly recommended.

12.
Polymers (Basel) ; 9(10)2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30965796

RESUMO

Almost general poly(vinyl alcohol) (PVA) films were prepared by the processing of a PVA solution. For the first time, a novel poly(vinyl alcohol) (PVA) film was prepared by the saponification of a poly(vinyl acetate) (PVAc) film in a heterogenous medium. Under the same saponification conditions, the influence of saponification time on the degree of saponification (DS) was studied for the preparation of the saponified PVA film, and it was found that the DS varied with time. Optical microscopy was used to confirm the characteristics and surface morphology of the saponified PVA film, revealing unusual black globules in the film structure. The contact angle of the films was measured to study the surface properties, and the results showed that the saponified PVA film had a higher contact angle than the general PVA film. To confirm the transformation of the PVAc film to the PVA film, ¹H nuclear magnetic resonance spectroscopy, X-ray diffraction measurements, differential scanning calorimetry, and Fourier-transform infrared spectroscopy were employed.

13.
J Nanosci Nanotechnol ; 16(6): 6486-93, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427741

RESUMO

Pullulan/Chitosan oligosaccharide (COS)/Montmorillonite (MMT) hybrid nanofibers were electrospun from their aqueous solution using different Pullulan/COS mass ratios and variable amounts of MMT. The effects of Pullulan/COS mass ratios and MMT contents on the morphologies and properties of PulluIan/COS/MMT hybrid nanofibers were investigated. The obtained nanofibers were characterized with field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and tensile strength measurement. The Pullulan/COS mass ratio and MMT contents significantly influence the morphologies and properties of the Pullulan/COS/MMT hybrid nanofibers. Higher Pullulan contents than COS contents forms uniform and bead free nanofibers. The addition of COS to Pullulan improves the thermal stability of Pullulan/COS blend nanofibers. The incorporation of MMT to the Pullulan/COS/MMT hybrid nanofibers increase their fiber diameter, improves their thermal stability and tensile strength. These morphological changes and property enhancement depend on the amount of MMT added. The XRD and TEM results suggest the coexistence of Pullulan, COS and MMT within polymer matrix through intercalation of polymer chain between silicate layers forming well-ordered multiplayer morphology with alternating polymeric and silicate layers.


Assuntos
Bentonita/química , Quitosana/química , Eletricidade , Glucanos/química , Nanotecnologia/métodos , Oligossacarídeos/química , Álcool de Polivinil/química
14.
Polymers (Basel) ; 8(10)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30974653

RESUMO

Novel poly(vinyl alcohol) (PVA) nanofiber mats were prepared for the first time through heterogeneous saponification of electrospun poly(vinyl acetate) (PVAc) nanofibers. The effect of varying the saponification conditions, including temperature, time, and concentration of the alkaline solution, on the morphology of the saponified PVA fibers were evaluated by field-emission scanning electron microscopy. At 25 °C, the saponified PVA fibers exhibited a broad diameter distribution. The average fiber diameter, however, was found to decrease with increasing saponification temperature. When the saponification time was increased from 6 to 30 h, the average fiber diameter decreased gradually from 1540 to 1060 nm. In addition, the fiber diameter and morphology were also affected by the concentration of the alkaline saponification solution. The most optimal conditions for fabrication of thin, uniform, and smooth PVA nanofibers corresponded to an alkaline solution containing 10 g each of NaOH, Na2SO4, and methanol per 100 g of water, a temperature of 25 °C, and a saponification time of 24 h.

15.
Nanomaterials (Basel) ; 6(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335358

RESUMO

The optimum conditions for the fabrication of zein/Ag composite nanoparticles from ethanol/H2O cosolvents using electrospinning and the properties of the composite were investigated. The zein/Ag nanoparticles were characterized using field-emission scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis. The antibacterial activity of the zein/Ag composite nanoparticles was also investigated. The XRD patterns and TEM images indicate the coexistence of a zein matrix and well-distributed Ag nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...